Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
OMICS ; 27(3): 116-126, 2023 03.
Article in English | MEDLINE | ID: covidwho-2261100

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has raised the stakes for planetary health diagnostics. Because pandemics pose enormous burdens on biosurveillance and diagnostics, reduction of the logistical burdens of pandemics and ecological crises is essential. Moreover, the disruptive effects of catastrophic bioevents impact the supply chains in both highly populated urban centers and rural communities. One "upstream" focus of methodological innovation in biosurveillance is the footprint of Nucleic Acid Amplification Test (NAAT)-based assays. We report in this study a water-only DNA extraction, as an initial step in developing future protocols that may require few expendables, and with low environmental footprints, in terms of wet and solid laboratory waste. In the present work, boiling-hot distilled water was used as the main cell lysis agent for direct polymerase chain reactions (PCRs) on crude extracts. After evaluation (1) in blood and mouth swabs for human biomarker genotyping, and (2) in mouth swabs and plant tissue for generic bacterial or fungal detection, and using different combinations of extraction volume, mechanical assistance, and extract dilution, we found the method to be applicable in low-complexity samples, but not in high-complexity ones such as blood and plant tissue. In conclusion, this study examined the doability of a lean approach for template extraction in the case of NAAT-based diagnostics. Testing our approach with different biosamples, PCR settings, and instruments, including portable ones for COVID-19 or dispersed applications, warrant further research. Minimal resources analysis is a concept and practice, vital and timely for biosurveillance, integrative biology, and planetary health in the 21st century.


Subject(s)
Biosurveillance , COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Water , Polymerase Chain Reaction/methods , DNA , COVID-19 Testing
2.
PLoS One ; 17(4): e0266958, 2022.
Article in English | MEDLINE | ID: covidwho-1883683

ABSTRACT

This study aimed to examine the associations with epidemiological, behavioral and clinical parameters of IgG antibody responses against the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after immunization with two doses of the BNT162b2 vaccine in a cohort of healthcare workers (HCWs, n = 439) in Greece. We used a mixed effects model to investigate the potential associations of antibody levels one and three months after vaccination and examined by bootstrapping t-tests the putative effects of gender and age for each period. We also employed exact tests of independence in R × C contingency tables to explore associations between behavioral and gender variables with vaccinations side effects. We found significant differences between males and females as well as between subjects in the youngest (21-30 years) and the older age groups in both study periods. We also detected a decrease in titers with age and time. Males had steeper elimination rates across the age span in both periods, in contrast to females who exhibited a softer elimination titer rate with age in the first period and almost constant titers in the second. Concerning side effects, we found a significant association between pain at the injection site and female sex. Hence, our real-world data analyses revealed potentially important clues into the associations of antibody responses to SARS-CoV-2 spike. We discuss the importance of these findings in view of current mass vaccination perspectives and provide useful clues for the design and optimal timing of booster doses for COVID-19.


Subject(s)
Antibody Formation , COVID-19 , Aged , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Female , Health Personnel , Humans , Male , SARS-CoV-2 , Vaccination
3.
OMICS ; 26(4): 204-217, 2022 04.
Article in English | MEDLINE | ID: covidwho-1730629

ABSTRACT

The advances made by microbiome research call for new vocabulary and expansion of our thinking in microbiology. For example, the life-forms presenting in both unicellular and multicellular formats invite us to rethink microbial existence, organization, growth, pathogenicity, and therapeutics in the 21st century. A view of such populations as parts of single organisms with a loose, distributed multicellular organization, introduced here as a germ-ganism, rather than communities, might open up interesting prospects for diagnostics and therapeutics innovation. This study tested and further contextualized the concept of germ-ganism using solid cultures of bacteria and fungi. Based on our findings and the literature reviewed herein, we propose that germ-ganism has synergy with a systems medicine approach by broadening host-environment interactions from cells and microorganisms to a scale of biological ecosystems. Germ-ganism also brings about the possibility of studying the multilevel impacts of novel therapeutic agents within and across networks of microbial ecosystems. The germ-ganism would lend itself, in the long term, to a veritable biocybernetics system, while in the mid-term, we anticipate it will contribute to new diagnostics and therapeutics. Biosecurity applications would be immensely affected by germ-ganism. Industrial applications of germ-ganism are of interest as a more sustainable alternative to costly solutions such as tampered strains/microorganisms. In conclusion, germ-ganism is informed by lessons from microbiome research and invites rethinking microbial existence, organization, and growth as an organism. Germ-ganism has vast ramifications for understanding pathogenicity, and clinical, biosecurity, and biotechnology applications in the current historical moment of the COVID-19 pandemic and beyond.


Subject(s)
COVID-19 , Microbiota , Bacteria , Humans , Pandemics , Virulence
4.
Future Microbiol ; 16: 455-459, 2021 05.
Article in English | MEDLINE | ID: covidwho-1389071

ABSTRACT

Tweetable abstract An opinion on the coronaviruses' evolution paradoxes, the continuing adaptation of the SARS-CoV-2 in humans following the zoonotic transmission, and clues into escape routes from host immune responses.


Subject(s)
Evolution, Molecular , Immune Evasion , SARS-CoV-2/genetics , COVID-19/immunology , COVID-19/virology , Genome, Viral , Humans
5.
OMICS ; 25(8): 484-494, 2021 08.
Article in English | MEDLINE | ID: covidwho-1307504

ABSTRACT

Pandemics and environmental crises evident from the first two decades of the 21st century call for methods innovation in biosurveillance and early detection of risk signals in planetary ecosystems. In crises conditions, conventional methods in public health, biosecurity, and environmental surveillance do not work well. In addition, the standard laboratory amenities and procedures may become unavailable, irrelevant, or simply not feasible, for example, owing to disruptions in logistics and process supply chains. The COVID-19 pandemic has been a wakeup call in this sense to reintroduce point-of-need diagnostics with an eye to limited resource settings and biosurveillance solutions. We report here a methodology innovation, a fast, scalable, and alkaline DNA extraction pipeline for emergency microbiomics biosurveillance. We believe that the presented methodology is well poised for effective, resilient, and anticipatory responses to future pandemics and ecological crises while contributing to microbiome science and point-of-need diagnostics in nonelective emergency contexts. The alkaline DNA extraction pipeline can usefully expand the throughput in emergencies by deployment or to allow backup in case of instrumentation failure in vital facilities. The need for distributed public health genomics surveillance is increasingly evident in the 21st century. This study makes a contribution to these ends broadly, and for future pandemic preparedness in particular. We call for innovation in biosurveillance methods that remain important existentially on a planet under pressure from unchecked human growth and breach of the boundaries between human and nonhuman animal habitats.


Subject(s)
Biosurveillance/methods , DNA/isolation & purification , Microbiological Techniques , Public Health Surveillance/methods , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Genetic Techniques/economics , Humans , Microbiological Techniques/economics , Plants/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL